Advanced Energy Data Analytics

NC Association of Energy Engineers

February 12th, 2019

Energy Analysis Topics

- Utility Billing and Basic Energy Metrics
- Portfolio Analysis
- Load Shape Analysis and Indices
- Surface Plot Interpretation
- Weather Modelling
- Energy Savings Measurement
- Cumulative Sum "CUSUM"
- Demand Response Measurement
- Anomaly Detection
- Energy Usage Disaggregation
- Sources of Energy Waste
- Demonstration

About Enpira

Buildings

Energy Management Information System

Recommissioning Support

Advanced Analytics

Empirical vs. Theoretical Energy Analysis

Utility Billing Cost Components

Charge	Value	Description
Customer Charge	\$/month	Connection charge per facility May include minimum bill
Commodity Charge	\$/kWh \$/therm	Cost of delivered energy, note fixed & variable costs, distribution, seasonal or time of use rates
Demand Charge	\$/kW	Dependent on maximum of metered demand and minimum billing demand, seasonal adjustment
Fuel Cost Adjustment	\$/kWh	Variable charge to compensate utility for variable input fuel costs
Service Charges & Riders	\$/month	Collected fees for public projects
Secondary Services	\$/kWh \$/kW	Usually for higher voltages or three-phase service
Load Management Rebates	- \$/kW	Payment to reduce load during peak demand

Basic Energy Metrics

Metric	Value	Application
Electricity Cost	\$/kWh	Review tariff or energy procurement contract
Gas and Fuel Cost	\$/therm	Determine benefits of fuel switching options
Energy Use Index, EUI	kBtu/sqft	Benchmark against similar building types
On/Off Peak Cost	\$/kWh	Shift loads to off-peak e.g. thermal storage
Demand Charge Pct.	%	Find excess billed demand
Load Factor	avg/max	Avoid setting peaks (low) or unnecessary use (high)
Power Factor Charges	\$/kW	Investigate sources of kVA, budget for correction

Portfolio Analysis

Within Portfolio

- \$, kBtu,kWh, kW, therms
- Annual usage or per sqft
- Weather model metrics e.g. marginal kWh/^oF-day

External Benchmarking

- Energy Star Portfolio Manager
- Building Performance Database
- Commercial Buildings Energy Consumption Survey

Understanding Daily Building Energy Use

Meter Data Interpretation

Whole Building Energy Use Modelling

 $E = C - B_1(DD_{TH}) + B_2(DD_{TC})^*$

- Average daily usage
 - Average daily non-weather dependent usage
- Marginal energy use per degree day for heating (below heating BPT_H)
- DD_{TH} Heating Degree Days, based on BPT_H
- B₂ Marginal energy use per degree day for cooling (above cooling BPT_c
- DD_{TC} Cooling Degree Days, based on BPT_C

BPT: Balance Point Temperature – outdoor temperature at which building heat gains equal heat loses * Natural Gas models exclude B_2 and DD_{TC}

Measuring Energy Savings

NREL Uniform Methods Project

- Compute Whole Building Energy Use Models for pre- and postimprovement periods
- Compute pre- and postimprovement Normalized Annual Consumption (NAC) by applying one year of weather normals to the two models
- 3. Savings = Pre-NAC Post-NAC

ASHRAE-14 Method

- Compute a Whole Building Energy Use Models for the preimprovement period
- Saving = pre-improvement model with post-improvement weather – post-improvement usage

Cumulative Sum "CUSUM"

Cumulative Sum of Savings

- Cumulative difference between metered consumption and predicted consumption based on a pre-improvement model
- Quantifies total energy savings (or losses) over time
- Detects performance changes
- Electricity or Natural Gas

Use Cases

- Verification of energy efficiency measures
- Ensuring persistence in savings
- Detecting waste

Demand Response Measurement

How much load is shed by a building during a demand response event?

Anomaly Detection

Predicted Use

• Based on historic usage and weather data, and forecast weather

Actual Use

- As metered
- Excess use (~10%+) identifies anomalies

Use Cases

- Identifying abnormal operations
- Avoiding excessive peak demand charges
- Identifying after-hours system overrides

Anomaly Detection In Practice

Energy Usage Disaggregation

Heating & Cooling Load

- Dependent on weather
- HVAC system & thermal envelope

Variable Load

- Usage that tracks occupancy
- Lighting, computers, office equipment

Base Load

- Similar pattern each day
- Security lighting, ventilation, plug loads

Disaggregating In Practice

Disaggregating Natural Gas Meter Data

Waste = Saving Opportunity

Source of Waste	How Waste is Detected
System Overrides	Anomalies = Actual – Predicted Usage
Excess Demand	High peak load events, anomalies
Operational Inefficiencies	Inefficiencies = Predicted – Ideal Usage
Simultaneous Heating & Cooling	Overlapping Balance Point Temperatures
Billing Errors	Abnormal meter reads, wrong tariffs etc.
HVAC Equipment Degradation	Year-on-year weather model parameter changes

How is your building doing?

Daniel Kauffman dk@enpira.io

©2019 Enpira Inc., https://enpira.io